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AbrfmcL A number of necessary mnditions lor a d m  of nonlinear panial differential 
equations to pass the Painled lest with lhe Iiruskol ansntz is given. A theory for 
the admiuible m n a n c e  patterns of equations in Hamiltonian form is developed and 
discussed for -me importan1 special cases. Based M these results an algorithm can 
be described, which oDnslmcIs dl nonlinear evolution equalions of normal lype and a 
certain Hamiltonian form. 

1. Introduction 

Painlev6 type equations, i.e. those whose solutions have no movable critical points 
191, have recently become popular due to their connection with partial differential 
equations integrable by the inverse scattering transform [l]. In [2] an algorithm to 
test whether a given ordinary differential equation satisfies necessary conditions for 
it to be of F'ainlevk type is presented. In [14) a computer algebra package using 
MACSYMA and based on a modification of this algorithm is described. However, there 
is a problem as the system cannot handle free parameters automatically, if they affect 
the resonances. In [IS] a test which uses partial differential equations directly is 
proposed and [3] introduces a simplified version. In [8, 10, 11, 17, 131 the problem of 
ciassifying diiiereniiai equaiions based on the requirements of the Fainievk property is 
further clarified. In [15] the theory of an algorithm and a REDUCE package to classify 
a/[ nonlinear evolution equations of normal type (and a further restriction on the 
order) containing free real parameters based on a combination of an improvement 
of the approach developed in 171 and results of the previously cited literature are 
described. The crucial step in this procedure is to idcntify all resonance polynomials 

the Painlev6 test. 
There k one practical problem arising from this-the number of possible reso- 

nance patterns to be investigated increases very rapidly with the degree ofhoniogeneiry 
(see next section). If we make the stronger restriction that the evolution equations 
under consideration are not only normal hut also of Hamiltonian form, the number 
"l yVN"""1C ,CU"..YIICC y Y L L C I I . 0  Y. L.lC IY . . l lC .C W.,* YCC.C".I*a ".""L.W", "CWYIC "I 

a phenomenon called resonance pairing first ObsCNcd in the wntext of siniilnriry in- 
variant sysrems of ordinary differential equations [19]. In (121 a generalization of this 
result is given for ODES of Hamiltonian form analogous to lemma 6 in this paper. In 
[6] the authors discussed the Occurrence of pairs of resonances in Hamiltonian ODES 
from a geometrical point of view. 

(uo5-4470~2~15693+18107.50 @ I992 IOP Puhlishing Lld 5693 

"in clas evoiuiion quaiioiLi have mosi, pi iiiem'veis shuuid 

nf -nc&S.ln * a e - n ~ n ~ ~  - n ? + m m ~  in r h o  DninlairA C ~ C P  r l n ~ r o n c o c  A ~ ~ c ~ ~ r - ~ l l t ,  hnnn,.m - C  



5694 F Renner 

2. Definitions and fundamentals 

We study scalar nonlinear evolution equations 

A : Ut - K[u]  = 0 

with U = " ( " , a )  and K[u]  E P ,  where P denotes the vector space of differential 
polynomials with respect to the independent variable I. I C [ u ]  consists of terms of 
the form 

We call such a term a monomial. The order of I C [ u ] ,  o ( I C ) ,  is defined as 

o ( I C )  := max k - ( las:s+o) 

Further we assume that I C [ u ]  is of normal form, i.e. K[u]  = i tmr  + k[u] with 

We call IC homogeneous of degree h iff there is a weight w E Q, so that for all 
o( R )  < m. 

monomials Ti in IC 

E .  
a=, (ci - w) = h 

C.=O 

is satisfied and we write IC E 'Hk. 
Erample 1 .  (Kdv) A : i t t  - (71gt + 12uu,) = 0 ,  IC E X?,, since with the weight 
w = -2 we get the degree of homogeneity l(3 + 2) = 5 for u3= and uuI b 
homogeneous of the same degree because l(0 + 2)  + 1( 1 + 2) = 5.  Adding uZs E 
X:2,  for example, makes I C [ u ]  inhomogeneous. 

Remark. For a given weight 7u it is clear that 'Hi is a subspace of P and 

P = $xi. 
hEQ 

b valid. 

The differential operator (DO) D, : 'P + 'P is defined in the form 

Given a polynomial DO  DO) A [ u ]  : 'P 3 'P of the form 
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then the operator 

n 

A’[ti] := E( - 1)’ D: P, [ U ]  
”=O 

k called the adjoint operator of A.  
A pD0 J[u]  : P -+ P is called skew-adjoinf and serf-adjoinr, respectively, iff 

J’[u]  = -J[u]  J’[11] = J [ z L ] .  

Remark. Every (finite) skew-adjoint PDO J [ u ]  : P - P can be written in the form 

The pD0 6 : P - + P  with 

is called a variational derivative. 
An evolution equation 

A : ut - J [ u ] 6 H [ u ]  = 0 (4) 

with J [ u ]  skew-adjoint is said to be of Hamilloninn form. 

( - l ) k i u i z  + f i [u ]  with o ( k )  < IC and n odd with P,, = $ in (2). 

Remark. With the Noether theorem H [ u ]  is a conserved density. H can be given 
in an unambiguous way using the algorithm described in [SI. There H is called 
irreducible iff in every monomial of H[u]  the highest derivative of U is nonlinear, e.g. 
uuz is not an irreducible monomial whereas U* and 715 are. 

.According to the definition of a degree of homogeneity given above, a  DO A[u]  : 
P - P of the form 

Since we assume K [ u ]  to be normal, H has to be of the form H[n] = 

n 

A[u]  = E P,[u]D; + D:Ql,[lll 
,,=a 

can also be assigned a degree of homogeneity h > TI iff P,, Q,, E Xh-” or P,, , Q ,  E 
W for n = h. The variational derivative 6 is homogeneous of the degree h = w. 

If an evolution equation A with o( K) = ITI passes the Painlev6 test proposed 
in [18] in the Knrskal modified form [3], also called the resonance fomi, then there 
exists an expansion 

U = F- ‘  2 uz,(t)Fs E = x + f(l) 1 E N (5) 
”=O 
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which solves A formally and provides m - 1 free functions uv(t). 1 is called the 
leading order. We say A is a POinlevP property candidate (PPC) [a], iff at least one 
expansion of this form exists. 

Assuming K [ u ]  E 711, and inserting (5) into A, we get 

where (with ui = 0 for i < 0) 

Tj = 0 for 0 < j < h - I -  1 

OK 

T> = ( j - ! ' . + l \ f , ' .  -,, -,-[h-ij+l 4- <Lj-ih-ij 

and 

Hn = P~(UO)~~,-C,(~~O, . . . ~ ? l , , - l ) .  

Altogether we have to solve the (infinite) system of equations 

poo(a)aph = = 6 (6j 

with solution@) a = U,, and 

Pn(Uo)Un = C,(%I.. .?%-1) + T , , ( 7 1 , , - ~ ~ - l ) + l , ~ , , - ~ h - l ) , ~ ) .  (7) 

to!!ouring* This re-stncth! on!y a_nce!s trivia! evo!ution quation3 as a I ?li - ?ls = 0, 
Remark. ?b avoid T, depending on U j  with j 2 n in (7), we assume h > I+  1 in the 

BeCauSe (7) is linear in U,, we obtain its left-hand side with the help of the Frkhet 
derivative: 

in the form 

DR[aE-']unER-'(~,l = P,(a)u, =: Q(cY,T~ . )u , .  (8) 

U,, # 0 with P0(U,)71, = 0 is called a branch, 1' with Q(u , , ,P )  = 0 resonance (of 
the branch u~). If the context is clear, we omit the extension in the branch U,,, 

??;e PEG E,,[?;] B se!f-adjain: fG eVGy E E T ,  s i x -  
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3. Necessay mnditions for PPCS 

When the resonance T is a non-negative integer we see that the left-hand side of (7) 
vanishes for n = r. This means that uy cannot be determined from this equation, but 
the right-hand side consists of previously determined functions U;. If this right-hand 
side also wnishes, then we say the compafibilify condifion is fulfilled otherwise A is 
not a PPC. 

As a consequence of the demand for m - 1 free functions ui(l)  in the PPC case 
we get the following lemma. 

Lemma 1. The resonance polynomial Q(710,r) must have m - 1 different non- 
negative integer zeros in at least one branch 710. 

We call this (these) branch(es) the principal branch(es) [13]. 

uo always equals -1. 
With the help of the normalization U - -u0u one of these principal branches 

In [17] the following lemma has been proven. 

Lemma 2. r = -1 is a resonance in every branch 710. 

Remark. The reader should note that for equations which are nor of normal form 
this lemma does not hold in general. For examples see the cases discussed in [4]. 

From [U] we get 

Lemma 3. If A : ut - K[u] = 0 is a PPC with respect to leading order 1 and IC is 
homogeneous of degree h, then for the resonances T; the following holds 

Iri - r,l # h - I i , j  E {l, .  . .,7n} (10) 

and from [lo] 

Lemma 4. If A : ul - IC[u] = 0 is a PPC with leading order I, then 1 E { 1 , 2 } ,  

Remark. 
the Painlev6 case, because we assume IC to be of normal form. 

If we now regard an evolution equation A : u1 - I<[u] = 0 with not necessarily 
homogeneous IC with respect to leading order I, we can write it with (1) in the form 

uo cannot be a free function for A, i.e. 1' = 0 cannot be a resonance in 

IC = 1<h, IC),> +' . '+ IC,, 

with IC, E XHlj and h i  < hi for i > j. 
In 1131 a proof is given for 

Lemma 5. If A : 711 - IC[u] = 0 with o ( K )  = 7 n ,  Ii[u] - not necessarily homo- 
geneous, is a PPC with respect to leading order 1 and for A : ut - Kh,[u] = 0 it 
holds that o(IC, , )  = 71%, then i\ is also a PPC with respect to leading order 1. 
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Remark. A consequence of lemma 5 is that if a homogeneous evolution equation 
does not pass the Painlev6 test, then any inhomogeneous extension of it cannot pass 
the test. So this result allows us, if we are looking for all possible evolution equations 
of normal form passing the F'ainlew! test, to start with homogeneous equations, iden- 
tify the PPC cases, perform the whole test, add all monomials with lower degrees of 
homogeneity with free coefficiena and check for which adaptation the inhomogeneous 
equation passes the test. 

4. Resonance patterns and Hamiltonian form 

In this section we uncover the reflection of the skew (or the self-) adjointness of the 
differential operators involved, in particular the symmetry properties of the corre- 
sponding resonance polynomials. In the following we assume A to be homogeneous 
in Hamiltonian form (4) with H E X!;l and J with degree of homogeneity h J .  Then 
(6) becomes 

P , , ( a ) a c - ( h x + h J - l )  = K[a<-'] 

= J[aE- ']6H[aE- ']  

= : F ( a ) P ( a ) a ~ - ( " + h J - I )  = 0 .  (11) 
From (11) we see that there are two possibilities for a branch a = U,,: u0 is a 

branch in 6 H [ u ] ,  i.e. P(u,) = 0; or it is generated by J [ u ] ,  ie. F(uo) = 0. With 
(8) the resonance polynomial has the form 

A : ut - (u5, + ~ O U U , ,  + 30u,u,, + 18Ou2u,) = 0 

H [ u ]  = -;U2+U3 EXH6_, 6 H  = u,,+3uZ J[u] = D:+l2D,u+lZuD, 

P,(a)a = K[a.E-2]lt=1 = -360(a2 + 3a  + 2)a = -360(a + l ) ( a +  2 ) a  

P(a)P(a)a = (D: + 12aD,<-'+ ~ ~ O E - ~ D , )  E-41c=1 ( 6  + 3 a ) a  

= - (120 + 120a)3(2 + a)a = P,,(a)a. 

For the resonance polynomial we get with (12) 

Q(a,r) = 3(12D,(r-2 + 12~'-2D,)E-4(2+a)alC,1+ ( ( r - 4 ) ( r - 5 ) ( r - 6 )  

+ 1 2 a ( r -  6 )  + l Z a ( ~ - 4 ) ) ( ( ~ -  2 ) ( ~ - 3 )  + 6 a )  

= 36(r-  10)(2+ a)a+ ( r - 5 ) ( r Z -  lOr+24+24a)( r2-5r+ 6 +  6a) 



Q(a, hH - 1 - T )  

0 

AS a consequence all zeros of Q(m,r) are lying symmetrical to ( h H  - 1 ) / 2  in every 
branch U = uQ. 
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Example 3. (Fordy-Gibbons 11) 

A : ut - D,6H[u] 

= U, - DI(u6= -?u=U.,= - 77l2lr,, - 14112,7L2 -28uu,u3, - 21uu;, 

- 2 8 ~ 2 ~ 2 , 4 -  14U27l,uzr + 1 4 ~ * 1 r ~ ,  + vuuZ 28 3 + 28u3uz - :U') = 0 

with 

H [  U] = +U;=- ;uzu;=- ;u?u;r + ;U: - $l'u: - U 4 2  U= - 1 8  21 E 'H- 8 

and branch polynomial 

Po(a)a= -?(a 4- I ) (a  - 2 ) ( a +  3 ) ( a  - 3 ) ( a  - 5 ) ( a  + 6 ) a .  

For the resonance polynomial Q ( u o , r )  = D , ~ p - 7 ~ t = 1 Q ( 1 1 0 , r )  we get 

Q( - 1, T )  = Q (  2 ,  T )  = ( T + 1 )( 7.- 2) ( r - 3) ( P -4)( T -  5 )  ( r - 7 ) (  r - 8 )  

Q ( - 3 , r )  = ( r +  5 ) ( r +  l ) ( r  - 3 ) ( r -  4)(r - 7)(r-  S ) ( r -  12) 

Q ( 3 , r )  = ( r  + 2 ) ( r +  l ) ( r  - 3 ) ( r -  4)(r - 7)(r-  8 ) ( r -  9) 

Q ( 5 , r )  = ( r + 5 ) ( r + 4 ) ( r +  l ) ( r -  7 ) ( ~ - 8 ) ( r -  l l ) ( r -  12) 

Q ( - 6 , r )  = ( T +  l l ) ( r + . 5 ) ( r +  1 ) ( ~ - 7 ) ( ~ - 8 ) ( r -  12)(r- 18) 

with all the zeros (except T = 7 generated by J[u] = D,) lying symmetrically to 
( h H  - 1)/2 = ;. 

For the part Q(a,r) of the principal resonance polynomial (12) determined by the 
skew-adjoint operator J we get the following symmetry properly. 
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* 
Q(a,2(hH - 1 )  + h ,  - 1 - r )  

= 2 (pu[a<-’]lc=l 6 ( 2 ( h ~  - 1 )  4- h,  - 1 - r - ( h H  - 1 + j - 1))  
“ = O  j=1 

n 

+(-1)”+’(-1)”~,[a€-’1(E=1 n ( r - ( h H -  l + j -  1)) = -Q(a,r) .  
, = 1  

0 

As amnsequence all zerosof Q(a,r )  are lyingsymmetrically to h , - l + ( h , - 1 ) / 2  
in every branch a = U,,. 

We can now rewrite (12) in the form 

Q(a,r) = (D,[aC-’]F‘-’) t - ( h q c = l P ( a ) a  + Q(a,r)Q(a,r) (15) 

with Q(a , r )  symmetrical to h H - 1  + ( h ,  - 1)/2 and degree h,  and with $(a,?-) 
symmetrical to ( h H  - 1)/2, degree A, - 21 and get the following corollary. 

Corollatyl. Ifthedegreeof Q ( a , r ) , i e .  h, ,  i s o d d , t h e n r =  h H - l + ( h , - 1 ) / 2  
is a zero of Q(a,r) in every branch a = uo If o( = uo is a branch in 6 H [ u l ,  Le. 
P ( u o )  = 0,  then T = h ,  is resonance in this branch, since 71 = - I  is one. 

These symmetry conditions on the resonance polynomials developed above mean that 
if (roughly speaking) half the number of resonances is given the other half can be 
determined. 

Erample 4. (Caudrey-Dodd-Gibbon-Sawnda-Koma 1,) 

A : ui - J [ u ] ~ H ( u ]  = ut - (U,, + 42UU52 + 8471z71qz + 126U2r713z + 25211: 

+ 1512uu,u2, + 5O47l2u3, + .)Ol(31i37iz) 

= o  
H [ u ]  = iu’ - 9uu: + G u 4  E ‘Hf2 

J [ u ]  = 0: + 12D,u + 12irD, 

P ( a ) c r = 2 4 ( a 2 + G a + 5 )  = 2 4 ( a + l ) ( a + R )  

&a) = (D: + 12aD,t-’+ 12a€-’DZ)  F-61(=I = - 1G8(2 + a )  

&-1, r )  = ( r + l ) ( r - 3 ) ( r - 4 ) (  7-8)  

611 = tiqz + 18uu2, + Dii: + 24u3 2 22  

o( - 5 ,  r )  = ( r + 5 ) ( r + l ) ( r - 8 ) (  r -12)  
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with Q ( - ~ , T )  and Q(-5,r) symmetrical to ( h ,  - 1)/2 = $ 
Q(-1,r) = ( T  - Z ) ( T  - 7 ) ( r  - 12) 

with Q ( - ~ , T )  and Q ( - 5 , r )  symmetrical to h, - 2 + (3 - 1) /2  = 7 with zero 
r = 7. 

The resonance polynomial in the branch 7t0 = -2 generated by J [ u ]  has the 
form 

Q(-5,r) = ( r +  4) (r -  7 ) ( r  - 18) 

Q(-2,r) = ( r  + 2 ) ( r +  l ) ( r -  3 ) ( r  - 4 ) ( r -  8 ) ( r -  9 ) ( r  - 14) 

with zero T = 14 = 2(h ,  - 1) and the other zeros lying symmetrically to 
( h ,  - 1)/2 = 3. (For the discussion of this case see the next section.) 

5. Hamiltonian forms and Winlev6 test 

In this section we examine evolution equations with certain Hamiltonian forms. For 
some classes we show that they do not pass the Painlev6 test right from the start and 
for others we develop formulae for all the possible principal resonance polynomials 
they can have, at most, in the Painlev6 case. These formulae only depend on the 
skew-adjoint operator j iu j ,  the ieading order i and the degree o E  homogeneity h, 
of the conserved density H [ u ] .  

Since we can choose uo = -1 for one principal branch and since there are the 
two possibilities that either uo is a branch in 6H[u] ,  ie .  P(-1) = 0 or one is 
generated by J [ u ] ,  i.e. F( - l )  = 0 we have (with (15)) to discuss the cases 

I $(-1) = 0 Q(-1,r)  = a(-l,r)Q(-l,r) 
and 

11: 8(-1) = J[-p],y-("-') IC=1 = 0 

Q(-1,r) = - ( ~ J [ - ~ - ' ] ~ ' - ' ) ~ - ' h H - ' ) ~ C = l P ( - l ) +  Q(- l , r )Q( - l , r ) .  

Further we can assume h , to be odd. 

5.1. For I 
From corollary 1 we have T = h, - 1 + ( h ,  - 1 ) / 2  and 1' = hH are zeros Of 
Q(-1,r) and with (10) we get 1A.l # h, + h ,  - 21, so that r = 1 - ( h ,  + 1)/2, 
r = 21 - h, and r = h, + h, - 21 - 1 (since T = -1 is resonance) are not zeros 
of Q(-l,r) in the PPC case. 

5.1.1. h, = 1 + J [ u ]  = D,. 
1 = 1 e. o ( K )  = h, - 1: 

Q ( - ~ , T )  = Q(-l , r )Q(- l ,v)  

Because of the symmetry of Q to ( h ,  - 1) /2  and T = 0, T = 1 are not zeros in the 
PPC case, this is the only possible principal resonance polynomial. 
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Erample 5. (mKdV) 

A : 

H [ u ]  = -4.2. - ;u4 E 'H?, 

- K[u]  = - ( 1 ~ 3 ~  - Gu'u,) = 0 

6 H  = u2* - 2u3 

y l u l -  i r . . i  - "2 n Q(-:,.~)..(.+;i(.-3jji.-4; 

Erample 6. (Fordy-Cibbons) 

A : U t  - ( U S r  - 521,~3, - 5 4 ,  - 5U2U3, - 207111,1122 - 511: + 5u4u,) = 0 (17) 

H [ u ]  = ;I& + $2 + ;U'.: + Q.6 E 

2 6 H  = U&= - 5u,u2= - 5 u  tiZn - 5 1 ~ ~ 2 .  + 1 1 ~  

Q(-1, r )  = ( T  + 1)(r - 2 ) ( r  - 3 ) ( ~  - 5 ) ( r  - 6). 

J [ u ]  = D, 
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5.1.2. h ,  = 3. 
I = 1: There is no principal resonance polynomial in this case, because from corol- 
lary 1 we have P = h, is the zero of Q(-1 , r )  and with (10) we get that T = h, 
(since P = -1 is resonance) cannot be the zero of Q ( - l ,  T )  in the PPC case. There- 
fore no evolution equation of this form having the Painlev6 property can exist. 

I = 2 3 J[u]  = D ~ , + / ~ u D , + P D , u  =+ o ( K )  = h H - l :  Q(a,r) is symmetrical 
to h, - 1 and of degree 3, so we have T = h, - 1 is resonance. Q(a,r) is 
symmetrical to ( h H  - 1) /2 ,  degree h, - 4, so T = h, is resonance. Since 1A.l # 
h, - 1 therefore T = 0,  T = 1 and r = h, - 2 cannot be resonances in the PPC 
case. 

We get h, - 4 different possibilities for a principal resonance polynomial 

Q(-l,r) = ( T - ( ~ H -  1 + k ) ) ( ~ -  (hH - 1 ) ) ( r - ( h H -  1 - k ) ) ( r +  1 )  

) 
h ~ - 4  

x ( ( r - ( l + i ) )  ( 7 - h , )  k = 2 ,  . . . , h H - - 3  (20) 
i # h ~ - k - 2  

i # k - 1  
i= l  

with /3 = ( k 2  - 1) /2 .  

Example 9. (Kaup-Kupershmidt) 

A : 

H[u] = -$U: + 2 7 1 ~  E ‘?it2 
J [ u ]  = 0: + $D,u + $ u D ,  

= 7 1 ~ ~  + 15U113= + ?71,7L?, + 457d27L, (21) 

6 H  = itzz + G712 k = 2 

Q(-1 , r )  = ( T +  l ) ( ~ -  3 ) ( ~ -  5 ) ( ~ -  G ) ( T -  7). 

Example 10. (Second KdV) 

A : ut - (I+,= + 20117L3z + 4071,~,,~ + 1207I21~,)  = 0 

~ [ 4  = -47L: + 2 2  E ‘?it2 
(22) 

6~ = tL2. + ~ 1 1 ~  

k = 3 

Q ( - ~ , T )  = ( r +  l ) ( r  - 2 ) ( r  - 5 ) ( r -  6 ) ( r  - 8). 
J[u] = Dl + 4D,u + 4710, 

5.1.3. h ,  = 5. 
I = 2: There is no principal resonance polynomial in this case, because from corol- 
lary 1 we have r = h,  is zero of G ( - l , r )  and we also get that r = hH is the zero 
of Q(-l,r). Therefore T = h, is a douhle zero of Q(-1,  r )  and we do not have 
enough different positive resonances. As a consequence no evolution equation of this 
form having the Painlev6 property can exist. 

5.2. For II 

5.2.1. h J  = I. J [ u ]  = D ,  does not generate a new branch; we have previously 
discussed this case. 
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5.22. h,  = 3. 1 = 2 j J[u] = DZ + p t ~ D ,  + ODzu j O( I C )  = h, - 1: Since 
@ ( - I )  = o we get for 0 

@ ( - I )  = J [ - E - 2 ] E - ( h H H - 2 )  I t=1 

- - - ( h H - 2 ) ( h H - I ) h H + P ( h H - 2 ) + p h , = O j p =  ?( h , - 2 ) h ,  

and for the principal resonance polynomial Q ( - 1 ,  T )  

Q ( - l , r )  = -1 * ( h H  - 2)hH(E‘-2D,E-(hH-2) + DzCr-hH)I (=l  P ( - 1 )  

+ ( ( r - ( h , - 2 ) ) ( T - ( h H - l ) ) (  r - 1 1 H ) - $ ( h , - 2 ) h H ( T - ( h H - 2 ) )  

- + ( h H  - 2 ) h H ( r -  h H ) ) Q ( - l . r )  

+ ( T -  ( h ,  - 1 ) ) ( ( r -  (h” - 2 ) ) ( 7 . -  11,) - ( h ,  - 2 ) h , ) Q ( - l , T )  

= - f ( h H - 2 ) h H ( r - 2 ( h , - ~ ) ) P ( - ~ )  

= I ^  O l L  - \ \ ,  I l l .  “\L A, r \  I I -  I L  1 \,-A, - ( r  - ‘I U,, - ] , ( - ? ( U ,  - L , r L H  r (--I I T I - ( I L , ~  - 1 J j I ~ 1 - 1 ,  7)) 

= : ( r  - 2 ( h ,  - l ) ) Q ( - l ,  T ) .  

Q(- I , r )  is still symmetrical to ( h H  - 1 ) / 2 ,  so T = h ,  must be a resonance (since 
r = -1 is one). With (10) we get P =  1 ,  r = h ,  - I (since r = 2 ( h ,  - 1) is one), 
v 7 h,, - 2 (since T = -1 is one) cannot be resonances in the PPC case. 

Therefore 
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6. A construction algorithm 

From the above results we can formulate the following construction algorithm for 
evolution equations in one of the previously discussed Hamiltonian forms: 

Choose a leading order 1 and a degree of homogeneity h for a starting conserved 
density. 

geneily h and free coefficients. 

operator 44. 
coefficients to get a K[u] with the appropriate resonances. 

parameters. 

Painlev6 test. 

and examine the most general inhomogeneous case in an analogous way. 

Erample 13. 

9 sfisiruct th& deasiry @Uiii of a;; iiebu&;e i-iloiioiiiia;s .Wiih clegiee of hoi-ilo- 

0 Execute the variational derivative and choose the form of the skew-adjoint 

Construct the possible resonance pattern@) and adapt some (all) of the free 

i Peifoim *e Pain!& test h Lk? p:i.-.cipa! branch 2-4 adap: t?L :est af :he f;ee 

If there are still free coefficients left, look for other branches passing the 

If you end up with a PPC case perform the whole Painlev6 test and construct 

(i) Case I with 1 = 2, h,, = 6 and h, = 3: 

3 6  2 H [ u ]  = - + U :  + y17t E 7 i - 2  6H = 712+ + :3yIlt 

J [ U ]  = D; + ~ U D ,  + pD,tt with p = ( P  - i j / z  and ic = 2 , 3  

A : ut-( 7tsr+2(13+3yl)7tr~,,+(/j+ IXy, )rc,7t2,+15yl[~7r 2 7 t z )  = 0. 

The principal resonance polynomial for this evolution equation exhibiting the free 
parameter y, is 

Q ( - l , r ) = r 5 - 2 0 r 4 - ( G Y 1 + 2 1 3 -  l ~5 )7~3+( . 'OO+90y ,  - 5 8 0 ) ~ '  

-(444y,- 15y,/3+GR/3- 1 0 4 4 ) ~ - ! 3 0 y ~ / ~ + 7 2 0 y ,  + 1 2 0 0 - 7 2 0 .  

With (20) we have the following two possibilities of principal resonance patterns in 
the PPC case 

2 3  - 1 3  5 6 7 2 
3 i  - 1 2  5 6 8 2 

Since all parameters are determined, we can perform the Painlevi? test in the well 
known way and we end up with the cases k = 2 (KaupKupershmidt (21)) and k. = 3 
(second Kdv (22)) passing this test. 



Nonlinear evolution equations and the Painlev6 analysis 5707 

The next step of the algorithm is to extend the homogeneous equation to the 
most general inhomogeneous one. In this example we will discuss the second KdV 
equation, ie. 

A : ut - I ( z [ ~ i ]  = Z L ~  - (uSr + 2 0 ~ ~ ~ ~  + 4 0 ~ ~ ~ ~ ~  + 120u2u,) = 0. 

The general inhomogeneous irreducible conserved density H,,, is 

Hlnh[u] = - + U :  + 27i3 + y2u2 

and the corresponding inhomogeneous skew-adjoint operator J,.,, 

Jlnh[u] = D: + 4710, +4D,u 4- Y3Dr. 

Performing the Painlev6 test in the principal branch, we end up, that with 

7, = ;ai y3 = 20cr 

the following inhomogeneous evolution equation is  a PPC 

A,nh : ul-1~2[u+(2]-allil[u+a]-a(8al-120a)u, = 0 

where IC,[u] denotes the right-hand side of the K ~ V  equation (19). 

H [ u ]  = $uzz + yluuz + y2u4 E 7 i y 2  

J [ u ] = D : + p u D , + p D , u  

A : ut -(-7, +2( 0-7 1 )?L~&F.= + ( B  -87,) t i y  7i4= - 1% 1 ~ 2 ~ % ~  + 4 (37, -71 /3)l~z1~3z 

@,al E W arbitrary 

(ii) Case I with 1 = 2, h ,  = 8 and h ,  = 3: 

6N = Z L . , ~  - 2y1uiiaZ - yi~1z  + 4y27i3 

with p = ( k Z - 1 ) / 2 a n d  k = 2  ,..., 5 

+ (727, - 1 0 y 1 ~ ) u u z t ~ 2 z  + (24y2 - y1/3)uz f 28y2/h3u,) = 0. 

The principal resonance polynomial for this evolution equation exhibiting free param- 
eters y l ,  7 2  is 

Q(- l , r )  = ? 7 - 3 5 T 6 + ( 2 7 1  -2P+511)T5+7(6/3-RT1 -575)1’4 

+ 2(30971 - 2ylP+ Gy, - lGD/?  + 9 2 1 . 3 ) ~ ~  

+ 14(4y1/3 - 2427, - 1x7, + 93/3 - 3 4 0 0 ) ~ ~  

+ 4(2344-(, - G9y1p - 77# + 43x7, - 62913 + 1 7 3 1 6 ) ~  

+ 224(3y1P - 487, + Y ~ B  - 1x7, + 15/3 - 1x0). 

With (20) we have the following four possibilities for the principal resonance patterns 
in the PPC case 

k . P  r1 T,  r3 vq r5 r6 T~ 71 7 2  

2 3  - 1 3  4 5 7 8 9 -9 6 
3 i  - 1 2  4 5 7 8 10 -10 10 
4 E  - 1 2  3 5 7 8 11 -10 10 
5 1’2 - 1 2  3 4 7 8 12 -9 6 
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Since all parameters are determined, we can perform the Painlev6 test in the well 
known way and we end up with the cases k = 2 (KaupKupershmidt 11), k = 3 
(third KdV) and k = 5 (Caudrey-Dodd-Gibbon-Sawada-Kotera 11) passing this test, 
whereas for k = 4 in the principal branch u0 = -1 the compatibility condition at 
T = 5 cannot be fulfilled. Therefore this equation cannot have the Painlev6 property 
and is of no further interest here. 

The next step of the algorithm is to extend the homogeneous equation to the most 
general inhomogeneous one. In this example we will discuss the KaupKupershmidt 
I1 equation, i.e. 

A : ut - ICII[u] = ut - (U,= + 2 1 ~ 7 1 ~ ~  + ~ u , 7 1 , ,  + 1 2 6 1 1 ~ ~ ~ ~ ~  + 126u2u3, 

+ 567uuZuz3 + ?U: + 252u3u,) = 0. 

ffinh[U] = ! j 7 L i 2  - 97L7L; + 6U4 + 73U3 + 7471: + 75 '1  2 

(24) 

The general inhomogeneous irreducible conserved density Hjnh is 

and the corresponding inhomogeneous skew-adjoint operator 

J, .~[U]  = DZ + ;uD, + ;Dx71 + Y ~ D , .  

Performing the Painlev6 test in the principal branch, we end up that with 

y3 = 24a  + 2a, yq = -sa - ?. 2al  75 = 6a(Ga+al)  7 =3a  

the following inhomogeneous evolution equation is a rPc 

Ainh : ~1~-~~~,[~~+a]-a,IC,[~~+a]-9~a~(4n+n,)~~, = 0 a , m ,  E R arbitraly 

(25) 

where K1[u] denotes the right-hand side of the Kaup-Kupershmidt equation (21). 

Remark. The phenomenon that the inhomogeneous PPCS are shifts in the homo- 
geneous equations plus their infinitesimal symmetries lying below in degree of ho- 
mogeneity times arbitraly constants, Le. are of the form A : U, - K [ u  + a] - 
a1Kl[u + a] - . . . - a,,IC,[u + a] - f ( a , a , , .  . . , a, , )711 = 0 with !<[U] E 'H!, 
and ICi[u] E 'My,, hi < h infinitesimal symmetries of A : 71, - K [ u ]  = 0, a n  always 
be observed and will be object of further investigations. 

(iii) Case I with 1 = 1, h ,  = 6 and h,  = I :  

H[u] = + y1u? + y2tlz71: + y371 6 6  'H-, J [ U ]  = D ,  

A : ut - (us=  - 6y1u,ugl - 6y17ri, - 2y2u: - 872uuJu2z 

- 272712713z 30y37r471,) = 0. 

In the PPC case, A has to have (with (16)) the principal resonance polynomial 

Q(-1,r) = ( T +  l ) ( r - 2 ) ( ~ -  3 ) ( ~ -  5 ) ( ~ -  6). (26) 
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Adapting the free parameters according to (26) and performing the test in the prin- 
cipal branch, we end up with the PPC 

A : ut - k[u]  - 6 ~ 1  k [ ~ ]  = u1 - (u5% - 1071; - 407l7l,uzs - 1 0 7 ~ ~ 7 ~ ~ ,  + 307i471,) 

- 67: (-71,U3z - 7lzZ 2 + + 4U7l57lZz + 7127132 - 5u4u2) 
= O  (27) 

and y2 = 4 3 7 ,  - 5 ) ,  y3 = -(yl - 1). 

Remark. The differential polynomial k in (27) is called rdegenerate 1151, since its 
resonance polynomial in the branch uo = -1 vanishes identically. 

If we now demand that (27) should have another principal branch u , , ~  # -1, and 
since there is only one possible resonance pattern, we have to solve the equation 

k [ u ] + i . , l i [ t i ]  = - ( k [ ~ 7 i ] + j ~ k [ n 7 1 ] )  1 c i f  1 n 

nnA m a t  rhn  onI..ri-..r 
PI," 5 - L  "11 .,"I"L.",,a 

Since cases (ii) and (iii) are symmetrical, we only have the WO different cases: the first 

and the second with y: = 

lished in (161. 

is the second mKdv, A: 7r1 - ( 7 1 5 =  - 10u: - 407111171z2 - 1 o u 2 7 1 3 ,  + 3 0 7 ~ ~ 7 1 , )  = 0;  
is (17): the Fordy-Gihbons equation. 

The author has implemented this algorithm in a REDUCE package, which is pub- 
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