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Abstract. A number of necessary conditions for a dass of nonlinear partial differential
equations to pass the Painlevé test with the Aruskel ansatz is given, A theory for
the admissible resonance patterns of equations in Hamiltonian form is developed and
discussed for some important special cases. Based on these results an algorithm can
be described, which constructs all nenlinear evolution egquations of normal type and a
certain Hamiltonian form.

1. Introduction

Painlevé type equations, i.e. those whose solutions have no movable critical points
I9], have recently become popular due to their connection with partial differential
equations integrable by the inverse scattering transform [1]. In [2] an algorithm to
test whether a given ordinary differential equation satisfies necessary conditions for
it to be of Painlevé type is presented. In {14} a computer aigebra package using
MACSYMA and based on a modification of this algorithm is described. However, there
is a problem as the system cannot handle free parameters automatically, if they affect
the resonances. In [18] a test which uses partial differential equations directly is
proposed and [3] introduces a simplified version. In [8, 10, 11, 17, 13} the problem of
classifying differential equations based on the requirements of the Painievé property is
further clarified. In [15] the theory of an algorithm and a REDUCE package to classify
afl nonlinear evolution equations of normal type {and a further restriction on the
order) containing free real parameters based on a combination of an improvement
of the approach developed in [7] and results of the previously cited literature are
described. The crucial step in this procedure is to idcntil‘y all resonance polynomials
a certain class of evolution equations can have at most, if its members should pass
the Painlevé test.

There is one practical problem arising from this—the number of possible reso-
nance patterns to be investigated increases very rapidly with the degree of homogeneity
(see next section). If we make the stronger restriction that the evolution equations
under consideration are not only normal but also of Hamiltonian form, the number

nl' nncoihla racananra martarnc in the Painlavd race rporancec dreacrienlly knnonoa nf
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a phenomenon called resonance pairing first observed in the context of similarity in-
variant systems of ordinary differential equations [{9]. In [12] a generalization of this
result is given for oDEs of Hamiltonian form analogous to Jemma 6 in this paper. In
[6] the authors discussed the occurrence of pairs of resonances in Hamiltonian ODEs
from a geometrical point of view.
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2, Definitions and fundamentals

We study scalar nonlinear evolution equations
Aiu,— Klu]=0

with u = u(x,t) and K[u] € P, where P denotes the vector space of differential
polynomials with respect to the independent variable . /(] consists of terms of
the form

e 8y
T=a H uy? Ujp 1= 57 a, €N o € R.
c=0,...,k
We call such a term a monomial. The order of K[u], o( K'), is defined as

o(K) 1= max {k'aaK £ 0}.

U

Further we assume that K[u] is of normal form, ie. K{u} = . + K[u] with
o(K) < m.

We call K homogeneous of degree h iff there is a weight w € @, so that for all
monomials T} in K

ki
Z a., (¢;—w)=

ci=0
is satisfied and we write K € H:.

Example 1. (KdV) A ; u, — (uy, + 12uu,) = 0, K € H3,, since with the weight
w = —2 we get the degree of homogeneity 1(3 4 2) = 5 for uy, and uu_ is
homogeneous of the same degree because 1(0 4 2) + 1{1 + 2) = 5. Adding u,, €
H*,, for example, makes K[| inhomogeneous.

Remark. For a given weight w it is clear that H% is a subspace of 7 and
P=Pn. M
heQ
is valid.
The differential operator (DO} D, : P — 7 is defined in the form

(=]

2 et a,u
Given a polynomial DO (pDO) A[u] : P — P of the form

Alu] = Z P {u] DY P,ePUR

v=0
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then the operator
A[u] 5= 3 (~1)* DL P, [u]
r=0

is called the adjoint operator of A.
A pDO J[u] : P — P is called skew-adjoint and self-adjoint, respectively, iff

J'[u] = =J[u] J[u] = J[u].

Remark. Every (finite) skew-adjoint ppDO J[u] : P — P can be written in the form
n
Jlul = )" P,[u]D% + (~1)"*' DL P, [u] P, e PUR. @
=0

The gDO & : P ~+ P with

= 8
= —-1)¥D¥ 3
§:=3 (-1)" Dl 3
r=0 (£
is called a variational derivative.
An evolution equation
Acu, — Jul§H[u]=0 4)

with J[u] skew-adjoint is said to be of Harmiltonian form.
Since we assume K[u] to be normal, H has to be of the form H[u] =
(-1)¥Lu}_ + Hlu] with o(H) < k and n odd with P, = L in (2).

Remark. With the Noether theorem H[u] is a conserved density. H can be given
in an unambiguous way using the algorithm described in [5]. There H is called
irreducible iff in every monomial of H{u] the highest derivative of u is nonlinear, e.g.
uu,_ is not an irreducible monomial whereas u? and 2 are.

.According to the definition of a degree of homogeneity given above, a pDO A[v] :
P — P of the form

Alu] = ) P,[u] Dy + DiQ,{x]

=0

can also be assigned a degree of homogeneity h > n iff P,,Q, e A" or P,,Q, €
R for n = h. The variational derivative § is homogeneous of the degree 7 = w.

If an evolution equation A with o( ') = m passes the Painlevé test proposed
in [18] in the Kruska! modified form [3], also called the resonance form, then there
€Xists an expansion

u=6“iu,,(t)£" E=a+f(1) leN (5)
v=0
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which solves A formally and provides m - 1 free functions w,(¢). [ is called the
leading order. We say A is a Painlevé property candidate (PPC) [15], iff at least one
expansion of this form exists.

Assuming K[u] € #"*, and inserting (5) into A, we get

Azuy~Klul =Y (T, - H,)&"

j=0
where (with u; = 0 for i < 0)

T, =0 forogj<h-1-1
or

= r — "I -L \ f‘l . - .
W D + %oy

and

H, =P (uglu, — C,(tg,... ;).

Altogether we have to solve the (infinite) system of equations

a=h -1
P{a)a€? = K[ag™

n

1
l =
with solution(s} e« = u, and

P(ug)u, = Colttes- s g 1} + T(ttn_(aoiysts negnonys £ (D

Remark. 'To avoid T, depending on u; with j > n in (7), we assume A > [+ 1 in the
fnllnwma This restriction only cancels mv:al evolution euuanom as Ay, —u, =0

Because (7) is linear in u,, we obtain its left-hand side with the help of the Fréchet
derivative:

Dy[ulQ = 2 Klu+ Qo= 3 2 Sodpiq

p=0

in the form

DK[aﬁ"’]unE”'zifﬁ = P,(a)u, =: Q(a,n)u,. (8)

ug # 0 with Py(ug)u, = 0 is called a branch, » with Q(ugy,r) = 0 resonance (of
the branch uu) If the context is clear, we omit the extension in the branch w,.

The pDO D;5[u] is self-adjoint for every B € P, since

D;sglu]l = Z a(zzo_-,o("l)kDgaB[u]/c')ukx) D

v=0 3“"“’
o o x 92B[u)
— k I»— ¥
- Zz(_l) Dg S Ou,,.. Ds
v=0 k=0 wE I
bk Nem . w97 Blu 3
I N N e
k=ov=0 T

= Diglu). (%)
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3. Necessary conditions for ppCs

When the resonance r is a non-negative integer we see that the left-hand side of (7)
vanishes for n = r. This means that », cannot be determined from this equation, but
the right-hand side consists of previously determined functions ;. If this right-hand
side also vanishes, then we say the compatibility condition is fulfilled otherwise A is
not a PPC.

As a consequence of the demand for m — 1 free functions u;(t) in the PPC case
we pet the following lemma.

Lemma 1. The tesonance polynomial Q(u,,r) must have m — 1 different non-
negative integer zeros in at least one branch wu,.

We call this (these) branch(es) the principal branch(es) {13).

With the help of the normalization » — —u,u one of these principal branches
u, always equals —1.

In {17] the following lemma has been proven.

Lemma 2. r = —1 is a resonance in every branch .

Remark. The reader should note that for equations which are not of normal form
this lemma does not hold in general. For examples see the cases discussed in [4].

From [15] we get

Lemma 3. ¥ A u, — K{u] = 0 is a rrC with respect to leading order ! and K is
homogeneous of degree h, then for the resonances r; the following holds

|7y — ;] # R =1 i, €{l,...,m} (10)
and from [10]
Lemma 4. Uf A :u, — K[u] = 0 is a PPC with leading order /, then { € {1,2}.

Remark. wu, cannot be a free function for A, i.e. r = 0 cannot be a resonance in
the Painlevé case, because we assume K to be of normal form.

If we now regard an evolution equation A : u, — K[u] = 0 with not necessarily
homogeneous K with respect to leading order I, we can write it with (1} in the form

I': = I{hl + I\‘.hg + "‘+ I(hk

with I, € K and h; < h; for i > j.
In [15] a proof is given for

Lemma 5. If A : u, — K[u] = 0 with o(K) = m, K[u] not necessarily homo-
geneous, is a PPC with respect to leading order ¢ and for A : w, — K, [u] = 0 it
holds that o( K ) = m, then A is also a PPC with respect to leading order 1.
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Remark. A consequence of lemma 5 is that if a homogeneous evolution equation
does not pass the Painlevé test, then any inhomogeneous extension of it cannot pass
the test. So this result allows us, if we are looking for all possible evolution equations
of normal form passing the Painlevé test, to start with homogeneous equations, iden-
tify the PPC cases, perform the whole test, add all monomials with lower degrees of
homogeneity with free coefficients and check for which adaptation the inhomogeneous
equation passes the test.

4. Resonance patterns and Hamiltonian form

In this section we uncover the reflection of the skew (or the self-) adjointness of the
differential operators involved, in particular the symmetry properties of the corre-
sponding resonance polynomials. In the following we assume A to be homogeneous
in Hamiltonian form (4) with H € H"¥ and J with degree of homogeneity h ;. Then
(6) becomes

Py(e)ag~(Prths=h = Klag™)
= Jlag 16 H[ag™]
= : P(a)P(a)ag~(hrthi-N) =, 11

From (11) we see that there are two possibilities for a branch a = u;: ug 5 a
branch in é H[u], ie. P(uy) = 0; or it is generated by J[u}, ie. P(u,) = 0. With
(8) the resonance polynomial has the form

Q(a,r) = Dla€™ 1€ ey
= DJ&H[O’E_I]‘ET_qf:l
= (Dj[e&™ ")) 6H[af ez
+ Jeg™"g P Dyl ™16 ey (12)
and it holds that o(6 H) = h — 21
Example 2, (Caudrey-Dodd-Gibbon—Sawada—Kolera)
A uy — (ugg + 30uuy, + 30u u,, + 180u?u,) =0
H[u] = ~ful4+u® e HE, §H = uy,+3u’ Ju] = D2+12D, u+12uD,
Pya)a = K[a£'2]|£=1 = —360(c?+ 30+ 2)a = -360(a+ 1)(a+ 2)a
P(a)P(a)a= (D2 +12aD,£7% + 120672D,) %, (6 + 3a)a
= — (1204 120)3(2 + a)a = Fy(a)a.
For the resonance polynomial we get with (12)
Q(a,r) = 3(12D,72 + 126772 D, )62 + a)alesy + ((r = 4)(r = 5)(r - 6)
+12a(r—6) +12a(r—-4)){((r—2)(r—3) + 6a)
=36(r-10)(2+ a)a+ (r—>5)(r? =107+ 24+ 24a)(r’ -5r+ 6 + 6a)
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Q(-2,r)=(r+2}{r+ 1}(r=5)r-6)r—12)
Q-1,")=(r+1)(r-2)r-3)r—-6)(r-10).

oL o Ay
ror ine p arL l.g[a T') Ul lnt: Pflﬂblpdl fesonaice
we

P
the density A/ we get the following symmetry property.

~ 1 ._.__.,..‘I i1 ﬁ\ A
UIYIUINIGY (14) ucl.cuuuwu u_y

Lemma 6.
Qo) 1= Dsylab™'|e ooy = Qlashy — 1~ 7). (13)
Proof.

Qlo,r) = DaH[af—‘lfr_Jk:l

2. La H[a'f ] DY r=1
- ;]::3 D; Gup 01, D:& £=1
32H : ——k— Ver-
= Yo premthimvi-a prery
p=0k=0 UpeOUug g1
8*Hlag™]
= 1)f —52= (r=(hy=t=i) [J(r-C+i=1)
;okzo( ) IR T P IJI]; H H

o~ gy ]
ZZ( 1y* Buy O,

£=1

x (hH—-l—r—(hH—l—J )H(hH—l—r—(l+J—1))

j=1 j=l

— — 82 H[ag™]

-1 (=1 me—
;lgu( P(=1)*(-1) Bu,,Btins e

k
xTT(r—(i+j-1)) ﬂ(r— (hgy == )E"Qa, 7).

i=1 J l

a

As a consequence all zeros of Q(a, ) are lying symmetrical to (hy —1}/2 in every
branch o = u,.
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Example 3. (Fordy-Gibbons II)

A:u,— D §H[u]

=u, — Do {ug, — Tuzu,, — Tulu,, — 1duy 1y, — 28uu,tu,, — 210l

— 28uluy, + 14u’u ug, + 14un,, + Buud + 2814l - $u") =0

with
Hu] = ~}ud,~Fuyad,—Jutud, + Tl - Ttud —utu - Ll € M2,

and branch polynomial
Py(a)a=-L(a+1)(a-2)(a+3)(a-3)(a-5)(a+6)ca

For the resonance polynomial Q(u,,7) = D 6" 7|,_, Q(u,, ) we get

Q(-1,7) = Q(2,r) = (r+1)(r=2)(r=3)(r=4)(r-5)(r=7)(r—8)
R(=3,r)=(r+5}(r+ 1)(r=3)(r—4)(r = T)(r - 8)(r - 12)
QB =(r+2)r+ 1)(r=3(r-4)(r-T7)(r-8)(r-9)
Q) =(r+3)(r+4)(r+ 1)(r—7)(r—8)(r —11)(r - 12)
Q(=6,7) = (r+ 11)(r + 5)(r+ 1)(r — T)(r = 8)(r — 12)(r — 18)

with all the zeros {except » = 7 gencrated by J[u] = D)) lying symmetrically to
(hy-1)/2=1.

For the part Q(c,r) of the principal resonance polynomial (12) determined by the
skew-adjoint operator J we get the following symmetry property.

Lemma 7.
Qa,r) := J[agJertuh),_,

= - Q(a,2(hy -+ h;—1-7). (14)
Proof.

Qa, 7) = Jag~l]er-ta-D), )

(é)z Pu[aE—I]D;ET"(hH—‘)LE:l + (_1)111-1 Dz Pv[as—llgr—(hH—l)k:l

=0

= Y Pl Yoy [[(r= by =14+ 35 - 1))
r=0 1=1

v

+ (=1 P (af ey [[(r = (A + By = 1= 3))

i=1
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=

Qo 2thy-D+h,;—1—71)

=3 (Pu[af"]1.5=1 TRy - +h, —1—r—(hy—1+i-1))

»=0 i=1

+(——1)u+1,Du[o.qg-f]k___1 H(z(hH-£)+h_,—1-r—(hH+hJ—l—j)))

i=1

=S (-1 Plat oy [TCr= (g + s = 1= )
p=0

j=1
F (=1 (1) Plat ey [T = (hyy = L4 5= 1)) = (e, 7).
i=1

0

As a consequence all zeros of Q(c, 7} are lying symmetrically © A, —I4(hy—1)/2
in every branch a = u,.
We can now rewrite (12) in the form

Qo 1) = (Dy[at™ e e PoD_ Pla)a + Q(a, ) Q(a, ) (15)

with Q(e,r) symmetrical to hy — 1 + (h; — 1)/2 and degree h, and with Q(a,r)
symmetrical to (A — 1)/2, degreec hy — 21 and get the following corollary.

Corollary 1. 1f the degree of Q(a,7), ie. by, is odd, then r = hyy — I+ (hy;—1)/2
is a zero of Q(«,r) in every branch « = ug. If a = ug is a branch in § H[u], ie.
P(uy) =0, then » = hp is resonance in this branch, since » = —1 is one.

These symmetry conditions on the resonance polynomials developed above mean that
if (roughly speaking) half the number of resonances is given the other half can be
determined.

Example 4. (Caudrey-Dodd-Gibbon—Sawada—Kotera II)
A, = Ju6H[u] = vy ~ (ug, + 42uug, + 84u,1u,, + 126u,,1q, + 25223
+1512un,u,, + 504u?uy, + 2016231,)

=0
Hlu) = %ugw —9uul 4+ 6ut e M2, §H = wy, + 18uu,, + 9ul + 243°
J{ul= D2 +12D,u+ 12uD,
Pla)a=24(a®+6a+5)=24(a+1)(a+5)
P(a)= (D3 +12aD,6 % +120672D,) £, = —168(2 + a)

.

Q(-1,7) = (r+1)}(r-3)(r-4){r-8) Q(—B, r} = (r+5)(r+1){r-8)}(r-12)
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with @(—1,r) and Q(-5,r) symmetrical to (hy —1)/2=1

Q(-1,M) =(r=2)(r=T)(r=-12)  Q(=5,7) = (r+4)(r-T7)(r—18)

with @(—1,r) and Q(—5,r) symmetrical t0 hy — 2 + (3 — 1)/2 = 7 with zero
r=17T.

The resonance polynomial in the branch u, = —2 generated by J[u]| has the
form

Q(-2,7)=(r+2)(r+ 1)(r-3)(r - 4)(r - 8)(r-9)(r - 14)

with zero » = 14 = 2(hgy — 1) and the other zeros lying symmetrically to
(hy —1)/2 = 1. (For the discussion of this case see the next section.)

5, Hamiltonian forms and Painlevé test

In this section we examine evolution equations with certain Hamiltonian forms. For
some classes we show that they do not pass the Painlevé test right from the start and
for others we develop formulae for all the possible principal resonance polynomials
they can have, at most, in the Painlevé case. These formulae only depend on the
skew-adjoint operator J[u], the leading order ! and the degree of homogeneity A
of the conserved density H|[u].

Since we can choose u, = —1 for one principal branch and since there are the
two possibilities that either w, is a branch in § H[u], ie. P(=1) = 0 or one is
generated by J[u], ie. P(—1) = 0 we have (with (15)) to discuss the cases

LP(-1)=0  Q(-1,r) = Q(-1,mQ(-1,7)

and

I P(-1) = J[-¢ e Ro=D]_ =0

Q(-1,7) = — (D [-€7'em ) gD P(-1) + Q(-1,7)Q(-1,7).

Further we can assume A ; to be odd.

5.1. ForI

From corollary 1 we have » = hy — I+ (h; — 1)/2 and r = hy are zeros of
Q(—1,») and with (10) we get |Ar|# hy + hy — 20,50 that r =1 —(h; +1}/2,
r=2~h;and r = hy+ h; — 20— 1 (since » = —1 is resonance) are not zeros
of Q(—1,r) in the PPC case.

511 hy=1= Juj= D,.
l=1=20(K)=hy—1:

Q(-1,7) = Q(-1,7)Q(-1,7)

. ~

fop—4

=(r-(hH—1))(r+1)( II (r-(1+i)))<a-—hg). (16)

i=t

Because of the symmetry of Q to (hy —1)/2 and » =0, r = 1 are not zeros in the
PPC case, this is the only possible principal resonance polynomial.
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Example 5. (mKdv)

Ay~ Klu] = v, — (ug, — 6u’u,) =0
Hlu) = ~%u2 -1

1
2
N s}
i, W

r..1 —
U =

Example 6. (Fordy—Gibbons)

At uy - (ug, —Sugug, — 5ul ~5uluy, — 20uu 1y, — 513 +5utu ) =0 (17)
Hly] = -;-ug,, + %ui + %u"’ui + %us € M,

§H = uy, — Buyug, — 51u,, — Sund + u® Jul =D,

Q(-1,7r) = (74 1)(r - 2)(r - 3)(r - 5)(r - 6}.

I=2=20(K)=hy-3:

Q(-1,7) = Q(-1,mQ(-1,r)

hp—4
=(r—(hH—2))(r+'l)( 11 (r—(1+i)))(r——hH). (18)
i#Fhy—5
i£2

i=1

Because of the symmetry of @ to (hyy~1)/2and r=0, r =1 and r = 3 are not
zeros in the PPC case, this is the only possible principal resonance polynomial.

Exarnple 7. (KdV)
Ay — Kfu) = w, — (ug, + 12uu,) =0 (19)
H[u] = -1ul + 25 e HC, SH = uy, + 6u®
Jd=D,  Q~1,7)=(r+ )(r—4)(r~6).

Example 8. (Second Kdv)

A uy —(ug, + 200y, + 40U, 1y, + 120uu,) =0

Hu] = %ugz — 10w + 10wt e M3, §H = 1wy, + 2011, + 10u2 + 4042
Jul=D,  Q(=1,7) = (r+1)(r - 2)(r=5)(r - 6)(r - 8).
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512 h,=3.

=1: '{‘here is no principal resonance polynomial in this case, because from corol-
fary 1 we have r = h, is the zero of Q(—1,7) and with (10) we get that r = Ay
(since » = —1 is resonance) cannot be the zero of @(—1,r) in the PPC case. There-
fore no evolution equation of this form having the Painlevé property can exist.

l=2= Ju] = D3+BuD,+BD,u= o(K) = hy-1: Q(a,r) is symmetrical

to hy — 1 and of degree 3, so we have » = h, — 1 is resonance. Q(a,r) is
symmetrical to (hg — 1}/2, degree hy — 4, 50 » = hy is resonance. Since |Ar| #
hy — 1 therefore » = 0, r = 1 and » = hy — 2 cannot be resonances in the PPC
case.

We get hy — 4 different possibilities for a principal resonance polynomial

Q(-1,r)=(r=(hyg—1+k})(r—(hy - 1))(r—(hyg-1-k)(r+1)

hy—-4
x( 11 (r—(1+i)))(r—hH) k=2,....,hy -3 (20)
ifhy—k-2

igEIl

with 8 = (k? —1)/2.
Example 9. (Kaup-Kupershmidt)
A U, = s, + 15uug, + -";—5umuk + 45u%u, 21)
Hlu] = =12 + 2u® e HE, §H = uqy, + 6u? k
Jul= D3+ 3D, u+ 3uD,
Q(-1,7) = (r+ 1)(r = 3)(r = 5)(r~ 6)(r = 7).
Example 10. (Second Kdv}

|
X

A u, — (ug, + 20u1,, +40u uy, + 12000, ) =0 (22)
H(u]l = -1u? + 2u° e H®, §H = uy, + 61’

k=3 Jul= D3 +4D, v+ 4uD,

Q(~1,7) = (r+1)(r - 2)(r - 5)(r — 6)(r - 8).

513 h;=5.

=2 ’i‘here is no principal resonance polynomial in this case, because from corol-
lary 1 we have r = hy; is zero of Q(—1,7) and we also get that = = h 8 the zero
of Q(—l,r). Therefore r» = hy is a double zero of @(—1,r) and we do not have
enough different positive resonances. As a consequence no evolution equation of this
form having the Painlevé property can exist.

5.2 Foril

521. h, = 1. J[u] = D, does not generate a new branch; we have previously
discussed this case.
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522 hy=3 1=2= Ju = D+ BuD, + D, u = o(K) = hy —1: Since
P(-1)=0we get for 3

P(-1) = J[—£2)g- a2
= —(hy-2)(hy—1D)hy+Blhy-2)4+Bhy =0= = L{hyg-2}hy

and for the principal resonance polynomial Q{-1,r)

Q(-1,7) = —§(hy = Dhu(§772D, &~ =D 4 D g7"h)|y P(~1)
H((r=(hg =N r=(hyg-1))r—-hy)={(hg-2hy(r-(hg-2))
= 3k — Dhy(r = hy))Q(-1,r)
= ~ Jhy - 2)hy(r-2(hy~ 1)) P(~1)

+(r—(hg—1)(r—(hg =) 7= hy}—(hy~ 2)hn Q(-1,r)
=(r-2(hg-1))
= :(r—~20hy -1

1

N\ SN
JPW\(—1,7))

Ml —
:

|

[ ]
St
—
-
by
"
—
I
—
S
—
=

|
—_
=
L"
\_/

(= 1(h
NQ(-1

Q(—1,r) is still symmetrical o (hgy —1)/2, s0 » = hy must be a resonance (since
= —1 is one). With (10) we get r =1, r = h — 1 (since r = 2(h; — 1} is one),

r=hyg — 2 (sitce r = —1 is one) cannot be resonances in the PFC case.
Therefore
hp—4
(-1, ) =(r=2(hy - 1))(r+ 1)( I[e-a +z)))(r—hy) (23)
i=1

is the oniy possibie principai resonance poiynomial.
Example 11. (KdV)
Ay — Klu] = v, — (uge + 12uu,) =0

Hlu] = tv? e HL, §H =u Ju) = D2 +4uD, + 4.Da_.u
Q(-1,7)=(r+1){r—4)(r-6).

Example 12. (Caudrey-Dodd-Gibbon-Sawada-Kotcra)

L
)
i_

[

=]
=

1. +1Rﬂ1:21r } 0
U ls, ebutu,

il

Hlu] = ~1u2 + u® e HE, §H = 1, + 3u®
Jul = D24+ 12D u+ 120D,
Q(~1,7) = (r4 1){(r—2)(r = 3)(» = 6){r - 10).
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6. A construction algorithm

From the above results we can formulate the following construction algorithm for
evolution equations in one of the previously discussed Hamiltonian forms:

¢ Choose a leading order ! and a degree of homogeneity h for a starting conserved
density.

e e e =

irreducible monomials with degree of homo-
geneity h and free coefficients.

o Execute the variational derivative and choose the form of the skew-adjoint
operator J[u].

e Construct the possible resonance pattern(s) and adapt some (all) of the free
coefficients to get a K[u] with the appropriate resonances.

= Darf, tha Dainlavid tagt in tha nrincinal b h oand
& renorm we raiueve est in e P.iumpa. orancn and

parameters.

e If there are still free coefficients left, look for other branches passing the
Painlevé test.

¢ If you end up with a PPC case perform the whole Painlevé test and construct
and examine the most general inhomogeneous case in an analogous way.

Example 13.
(i) Case I with [ = 2, hy = 6 and hy; =3

Hiu) = —%ui + 7,11.3 € Hig dH = uq, + 3‘711:2
Ju] = D3 4 guD, + 3D, u with 3 = (k* = 1)/2and k= 2,3
A ¢y = (1, +2( 8437wty + (B4 18, Y, uy, +15v, Fu’n, ) = 0.

The principal resonance polynomial for this evolution equation exhibiting the free
parameter ~, is

Q(—1,7) = 7% — 207" — (6, + 28 ~ 155)2° + (205 + 90+, — 550)r*

— (4447, — 154, + 683 ~ 1044)r — 00+, + 7207, + 1203 — 720.

With (20) we have the following two possibilities of principal resonance patterns in
the PPC case )

kB Ty Ty Tz Ty Ty T
2 2 -1 3 5 6 7 2
3 4 -1 2 5 6 8 2

Since all parameters are determined, we can perform the Painlevé test in the well
known way and we end up with the cases k = 2 (Kaup-Kupershmidt (21)) and k = 3
(second Kdv (22)) passing this test.
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The next step of the algorithm is to extend the homogeneous equation to the
most general inhomogeneous one. In this example we will discuss the second Kdv
equation, ie.

A uy — KG[u] = u, — (ug, + 20uu,, + 40u,uy, + 120u’u,) = 0.
The general inhomogeneous irreducible conserved density H,;, is
Hiplu] = =1l 4 20® 4 ;0
and the corresponding inhomogeneous skew-adjoint operator J,,,
Jinh{uI = Dg + 4uD:z.' + 4D.‘l‘u + 73Dz'
Performing the Painlevé test in the principal branch, we end up, that with
1, = 1oy 73 = 20
the following inhomogeneous evolution equation is a PPC
Ay s u— K [ut o] —a I [uta]—o(8a~120a)u, = 0 o, € R arbitrary
where K, [u] denotes the right-hand side of the Kdv equation (19).
(i) Case I with =2, hy =8 and h; = 3;
Hiu] = Lul, + vuul 4+ yu e 1S, §H = uy, — 270y, — 1y u2 + 4,03
Ju] = D2 + guD, + 8D, u with 3= (k*—1)/2and k= 2,...,5
Ay —{( Uy, 2B duug, + (B8 Y 1y, — 147, tgptia, +4(3v, —, By,
+ (727 — 10, Buu iy, + (247, - qr]ﬂ)u‘z + 284, futu_) = 0.
The principal resonance polynomial for this evolution equation exhibiting free param-
eters -y, -y, i
Q(~1,r) = 7" —357% 4+ (2, =28+ 511)»® + 7(63 ~ 8, —~ 575)r?
+ 2(30941 = 2,8+ 6, — 16973 + 9212)r*
+ 14(4~, — 2427, — 18, + 933 — 3490)7*
+ 4(2344, - 699, 8 ~ 7,3 + 438+, — 6293 + 17316)r
+ 224(37, 8 — 487, + 123 — 187, + 153 — 180).

With (20) we have the following four possibilities for the principal resonance patterns
in the PPC case

kB ™ g Ty Ty Ty Ty Ty T Y2
2 5;- -1 3 4 5 7 8 9 -9 6
3 4 -1 2 4 5 7 8 10 10 10
4 ’—5” -1 2 3 5 7 8 11 -10 10
5 12 -1 2 3 4 7 8 12 -9 6
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Since all parameters are determined, we can perform the Painlevé test in the well
known way and we end up with the cases & = 2 (Kaup-Kupershmidt II), ¥k = 3
(third Kdv) and k = 5 (Caudrey-Dodd-Gibbon-Sawada—Kotera II) passing this test,
whereas for & = 4 in the principal branch u, = —1 the compatibility condition at
r = 5 cannot be fulfilled. Therefore this equation cannot have the Painlevé property
and is of no further interest here.

The next step of the algorithm is to extend the homogeneous equation to the most

general inhomogeneous one. In this example we will discuss the Kaup-Kupershmidt
I eguation, ie.

Auy = Kylu] = vy — (uqy + 21ung, + Blugu,, + 1261, uy, + 1260y,
+ 56Tuu, uy, + %ui + 25211.311,1.) = 0. {24)
The general inhomogeneous irreducible conserved density H; , is
Hinlul = $ud, — 9un? + 6u® + v31® + vul + v
and the corresponding inhomogeneous skew-adjoint operator J,
Jionlul = D2+ 3uD,_ + 2D uw+ v, D,.
Performing the Painlevé test in the principal branch, we end up that with

vy = 24a + 2a, Yy = -9~ o 5 = 6B + o) 4 z3a

the following inhomogeneous evolution equation is a PPC

Ayt u - Kylut o] —og K[ut o} -9a? (4ot a)u, = 0 o, o) € R arbitrary

(29)
where K [u] denotes the right-hand side of the Kaup—Kupershmidt equation (21).

Remark. The phenomenon that the inhomogeneous PPCs are shifts in the homo-
geneous equations plus their infinitesimal symmetries lying below in degree of ho-
mogeneity times arbitrary constants, ie. are of the form A : u, — K[u + o —
oK et a]l - —a, K, [u+ta]— fla,ar,....o,)u, = 0 with K[u] € H*,
and K;[w] € H"i, h; < h infinitesimal symmetries of A : u, — K] = 0, can always
be observed and will be object of further investigations.

(iii) Case ITwithl=1,hy=6and h; = |

Hlu] = Juf, + 110G + wuul + vu®H, I =D,

. 2 gm a3 s
A uy — (ug, — 67 u g, — 6y up, — 27U, ~ By, Ul iy,

— 2vyulug, + 30vutu,) = 0.
In the PPC case, A has to have (with (16)) the principal resonance polynomial

Q(=1,7) = (r+ 1)(r - 2)(r = 3)(r = 5)(r - 6). (26)
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Adapting the free parameters according to (26) and performing the test in the prin-
cipal branch, we end up with the ppC

A i u,~ Ku] - 67, K[u] = u, — (ug, — 1063 — 40uu, u,, — 10ulu,, + 30u*u,)
=6, (—ugug, —ul, + ud + duu,uy, + uluy, - Sutuy)
=0 (27
and v, = ~(37 = 5), 3 =—(v, = 1).

Remark. The differential polynomial I in (27) is called r-degenerate [15), since its
resonance polynomial in the branch «, = —1 vanishes identically.

If we now demand that (27) should have another principal branch v, , # —1, and
since there is only one possible resonance pattern, we have to solve the equation

Rl + % K1 = = (Klau] + % Klaw]) a1

a

a " g2 Ug,2
(i) -1 0 0 1
(i) -1 § —% 2
Gy -2 -3 % 3

Since cases (ii) and (iii) are symmetrical, we only have the two different cases: the first
is the second mKdv, A: u, — (u5, — 10u ~ 40uu u,, — 100y, + 30, ) = 0;
and the second with v, = 2 is (17), the Fordy-Gibbons equation.

The author has implemented this algorithm in a REDUCE package, which is pub-
lished in [16].
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